The nonlinear steepest descent method for Riemann-Hilbert problems of low regularity
نویسندگان
چکیده
منابع مشابه
A Steepest Descent Method for Oscillatory Riemann-hilbert Problems
but it will be clear immediately to the reader with some experience in the field, that the method extends naturally and easily to the general class of wave equations solvable by the inverse scattering method, such as the KdV, nonlinear Schrödinger (NLS), and Boussinesq equations, etc., and also to "integrable" ordinary differential equations such as the Painlevé transcendents. As described, for...
متن کاملNonlinear steepest descent and the numerical solution of Riemann–Hilbert problems
The effective and efficient numerical solution of Riemann–Hilbert problems has been demonstrated in recent work. With the aid of ideas from the method of nonlinear steepest descent for Riemann– Hilbert problems, the resulting numerical methods have been shown numerically to retain accuracy as values of certain parameters become arbitrarily large. The primary aim of this paper is to prove that t...
متن کاملSteepest descent method for solving zero-one nonlinear programming problems
In this paper we use steepest descent method for solving zero-one nonlinear programming problem. Using penalty function we transform this problem to an unconstrained optimization problem and then by steepest descent method we obtain the original problem optimal solution. 2007 Elsevier Inc. All rights reserved.
متن کاملThe global parametrix in the Riemann-Hilbert steepest descent analysis for orthogonal polynomials
In the application of the Deift-Zhou steepest descent method to the Riemann-Hilbert problem for orthogonal polynomials, a model Riemann-Hilbert problem that appears in the multi-cut case is solved with the use of hyperelliptic theta functions. We present here an alternative approach which uses meromorphic differentials instead of theta functions to construct the solution of the model Riemann-Hi...
متن کاملA Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems
In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indiana University Mathematics Journal
سال: 2017
ISSN: 0022-2518
DOI: 10.1512/iumj.2017.66.6078